Application of SR and PB Resin in the determination of Pb-210 and Po-210

S.Happel – TrisKem

EVT2204728 "2023 Training Workshop of IAEA's ALMERA Network on Advanced Topics in Radiochemistry Techniques: Lead-210 and Polonium-210"

11/10/2023



#### **TrisKem International**

- Based in Rennes (France)
- Independent company since 02/07
  - Formerly part of Eichrom Europe
  - ISO 9001 since 2007

- United Kingdom Ireland London Belgique Paris France France Milano Torino Barcelona Belgique Belgique Belgique France Milano Torino Belgique Belgique Belgique Belgique Ceseka re Ceseka re Coseka re
- Two suppliers of SR, PB Resin (TrisKem and Eichrom) depending country
- Main product: extraction chromatographic resins
- Staff : 20
- R&D, QC and TechSupport group:
  - 4 RadChem PhD, 3 Technicians
- R&D: Development of new resins, techniques and applications
- Products used in several domains





Geochemistry and Metals Separation



#### Extraction chromatography

Combination of liquid-liquid extraction (LLX) and chromatography

- Liquid-liquid extraction: distribution of an element between 2 non-miscible phases
  - Most general case: organic and aqueous phase
- Chromatography: distribution of an element between a solid and a liquid phase







## Extraction chromatography

Organic extractant impregnated onto inert support

- Supported Solvent Extraction » / « Solvent Impregnated Resins »
  - Stationary phase impregnated onto inert support
  - Distribution between two non-miscible phases
  - High density of functional groups
  - Fast kinetics/small volumes => rapid separations
  - High variety of selectivities
  - Combining several cartridges can improve/facilitate separation
  - Bleeding might need to be addressed (e.g. Pb elution with 6M HCl from SR)









#### Inert Support

Choice of inert support depending on application

- Mainly polymers
- Radiolysis stability, plastic scintillators,...
- Inert regarding chemical reactions with
  - Organic phase/extractant
  - Elements to be isolated
  - Mobile phase
- Stable regarding mechanical actions
- High specific surface
- Defined pore and particle size distribution
- Spherical particles



#### **Stationary Phase**



- Generally organic compounds
  - ➢ Few exceptions e.g. ABEC systems
- Non-miscible with water
- Non-volatile but soluble in volatile solvents
- Ideally fast kinetics
- High selectivity
  - > Aim: selectivity for analyte, no selectivity for matrix/interferences
  - Pure extractants, synergetic mixtures, solid extractants dissolved in diluents, solids (e.g. DMG)
  - Influence of Diluents
- Chemically, physically and mechanically stable
- High capacity



#### Types of Extractants

<u>Acidic</u> e.g. HDEHP (LN Resin)  $M^{3+} + 3HY \rightleftharpoons MY_3 + 3H^+$  $M^{3+} + 3(HY)_2 \rightleftharpoons M(HY_2)_3 + 3H^+$ e.g. CMPO/TBP (TRU Resin), DPPP (UTEVA Resin), SR & Pb Resins Neutral  $M^{3+} + nE + 3X^{-} \rightleftharpoons ME_n \bullet X_3$ **Metal Anion Complex Formation** Basic e.g. Aliquat 336 (TEVA Resin)  $R_3N + HX \rightleftharpoons R_3NH^+X^-$ M(X.) M"÷nX  $R_3NH^+X^- + MX_3 \rightleftharpoons R_3NH^+MX_4^ X^{-} = NO_{3}^{-}, Cl^{-}$ Metal + Anion \_\_\_\_ Complex Horwitz et al. Complex + Organic ==== Extracted

7

#### Typically employed extractants











- 1.0M 4,4'(5')-di-t-butylcyclohexano 18-crown-6 in 1-octanol.
- > 40% (w/w) loaded onto inert chromatographic support.
- Sr max. capacity: 21 mg / 2mL resin bed,
- Advised working capacity: max. 8 mg / 2mL resin bed (Opt.: 5 mg)
- Capacity for Pb higher

#### SR Resin – HNO<sub>3</sub> data





- Called SR Resin but higher retention of Pb
- Pb well retained at low HNO<sub>3</sub>, partial elution in water
- Attention: Po data in HNO<sub>3</sub>

#### SR Resin – HCl data

600<sub>1</sub>

500

400

300

200

100

0

Distribution ratio (Kd)

3 4 5 6 7 8 HCl concentration [mol/l]

Vajda et aL; 1997

Fig. 1. Distribution ratios  $K_d$  of lead, bismuth and polonium in HCl solutions.

Bi

- High Pb and Po uptake for 2M HCl
- > Pb elution with high HCl (alternative: citrate)

To be noted: A. Knight et al showed that octanol based resins (e.g. TK400) have very similar selectitivty for Po in HCl => diluent strongly involved in Po extraction

Fig. 3 Retention of Po4+ on Sr resin in HCl





10<sup>1</sup>



#### SR Resin





#### Effect of Calcium on Sr-85 Recovery

- **Major interferents**: Ca, stable Sr, K, Na => lower effect on Pb
- Monovalent interferent elimination possible: Coprecipitation with oxalate, phosphate or iron hydroxide

## **PB** Resin





- **Extractant**: 0.75M crown-ether (same crown ether as in SR Resin)
- **Diluent**: Isodecanol

(longer carbonated chain for easier removal of Pb)

- **Pb capacity:** 29 mg.g<sup>-1</sup> PB resin (lower than SR Resin)
- Main application: Pb-210 in water
- Less bleeding than SR Resin (lower solubility of Isodecanol in aqueous solutions)

#### Comparison PB vs SR







#### • Dw values SR Resin:



## **Differences SR and PB Resin**



- PB Resin:
  - Lower concentration (and thus amount) of crown-ether
  - Use of isodecanol instead of octanol
    - Horwitz et al showed that solutions of crown-ether in alcohols with longer chains show lower Dw
    - Less bleeding
  - Deliberate choice:
    - Pb retention on PB Resin remains high
    - PB Resin allows Pb elution in water
      - Especially interesting in case of evaporation and GPC measurement
- SR Resin: typically higher Po yields
- If only Pb to be analysed PB Resin might be a good option (pricing, easier Pb elution)
- For Pb and Po (and high matrix samples) SR better choice

#### New: TK102 Resin



- Modified version of SR Resin
  - Same crown-ether but diluent, inert support and ratios different
    - Higher amount of crownether
    - Short chained, fluorinated alcohol
  - Generally higher Dw and capacity for Sr, Pb, Ba
  - Improved Ra/Ba separation
  - Use of more hydrophobic diluent instead of Octanol
    - Significantly less Bleeding
- Separation methods under optimisation



## TK100/1 Resins



- Based on same crownether as SR Resin
  - Different diluents: TK100 => HDEHP, TK101 => short chained ionic liquid
  - Sr and Pb uptake also between pH 2 and 7
  - Concentration and purification on same column





- Typical applications :
  - Pb-210 in water samples (up to > 5L per 2 mL column/cartridge)
  - Sr-89/90 in water samples (up to 0,5L per 2 mL column/cartridge)
  - Sr-90 by ICP-MS (very high Zr-90 decontamination) => NPL
  - Ra-226 by ICP-MS => NPL (Load and purification in one step)
    - Agilent application note

#### TK100 Resin



- Spiked water samples at pH 2
- 1L sample, 2 mL cartridge
- Load at 5 10 mL/min
- K and Ca not retained
  - Sr breakthrough starts at 600 mL
- Rinse:
  - 5 mL deion. water
  - 15 mL 8M HNO<sub>3</sub>
- Sr Elution with 0.5 2M HCl
  - Th, Pb, U remain retained
  - May be eluted sequentially
- May be used for one-column sequential separation (Sr, U, Th, Pb, Ra,...)
- Using HDEHP as diluent allows for retention of Sr, Ba, Ra, Pb from acidified water samples (e.g. pH2)
- Stability issues with Sr retention





#### TK101 Resin



- Use of TK101 instead => HDEHP replaced by short chained ionic liquid
- High Ra & Pb retention from dilute acid, no Th, U retention



#### TK101 Lanthanides and Actinides (+ Bi and Pb)





- Very strong Pb retention at all HNO<sub>3</sub> concentrations and HCl < 6M HCl</li>
- Loading of >1L on 2 mL TK101 cartridge
- Easy purification of Pb from other éléments
- Elution in high HCl (or citrate)

#### TK101 Resin





#### Elution study TK101



- Initial testing
- 2 mL TK101 cartridge
- 5 10mL/min
- 1L sample (spiked tap water at pH2) load in 10 100 mL aliquots
- Rinse with 8M HNO<sub>3</sub> and 2M HCl, Pb elution in 6M HCl (optional citrate)
- Automatisation?



#### Diluents



#### Conclusion:

- In case of crown-ether based resins diluents have strong impact on resin selectivity
- Can be used to modify/adjust resin selectivity
- SR vs PB
  - Different crown-ether concentrations, different alcohol chain lenghts
  - Facilitate Pb elution from PB Resin
  - PB Resin might be advantageous in case of Pb-210 only, especially in case of measurement by GPC (elution in water)
  - SR generally prefered in case of Pb-210 and Po-210 (higher Po yields) and in case of high matrix samples
- Using 'cation exchanging' diluents allows for direct loading of Pb (Po under examination) from acidified water samples



#### Context:

- European drinking water directive 98/83/EC
  - WHO recommendations
  - Calculation of Total Indicative Dose (TID)
    - <sup>210</sup>Pb-<sup>210</sup>Po activities needed
- Analysis of radioactivity in natural and drinking waters
  - Pb-210 and Po-210 part of the natural radionuclides
  - Sensitive methods needed with low DL

#### Pb-210 / Po-210 in water samples



- Sample volume 1.5L (pH 2)
  - Similar methods were tested for sea water samples
- Addition of 10 mg stable Pb and Po-208 or Po-209
- Pb-Po co-precipitation with Fe(OH)<sub>3</sub>
  - Addition of 20 mg Fe(III)
  - Heating
  - Addition of 12 mL conc. ammonium hydroxide
  - Settling / filtration or centrifugation / rinsing
- Sequential separation of Po and Pb on Sr or Pb Resin
  - Only Pb: Pb resin advantageous (pricing, facile Pb elution)
  - Pb and Po: Sr resin advantageous (better Po yields)
- Po auto-deposition on Ag or Ni disc for  $\alpha$ -spec

## Pb/Po separation on Sr or Pb resin





- After further optimisation introduced as application note/method
- Load from 2M HCl to retain Pb and Po
- Reminder, when loading from 1M HNO<sub>3</sub> only Pb retained
- Rinse with 1M and 0.1M HNO<sub>3</sub> to elute Po => autodeposition
- Pb elution in ammonium citrate
  - for LSC measurement
- In case of GPC measurement either
  - PB Resin => elution with water
  - SR Resin => elution in 6M HCl
    - Attn. Organics!

#### Pb-210 measurement



#### • Pb:

- − 1 mL for AAS(/ICP-MS) measurement  $\rightarrow$  determination of chemical yield
- 9 mL for LSC measurement (or GPC)
- Pb-210 Counting:
  - Direct counting of Pb-210 via LSC ( $\varepsilon \approx 60$  %)
    - Time dependend calibration of LSC counter
    - Preferably 2 window method
  - LSC counting after Bi-210 ingrowth
    - Better  $\varepsilon$ , easier calibration, longer waiting time
  - Also possible: evaporation of Pb eluate and GPC
    - Problem: citratic acid, better elution with 20 mL dest. Water or 6M HCl

#### Method development – elution studies





Alpha/Beta discrimination LSC counting

#### Selectivity



- Decontamination factors (DCF):
  - overall high for U, Th and Sr,
  - good DCF for Ra in Pb fraction,
  - rather low DCF for Ra in Po fraction not problematic since Ra is not auto-deposited.

| Interfering DN | Pb Fr        | action       | Po Fraction |              |  |
|----------------|--------------|--------------|-------------|--------------|--|
|                | α <b>DCF</b> | β <b>DCF</b> | α DCF       | β <b>DCF</b> |  |
| Ra-226         | 182          | 89           | 14          | 45           |  |
| U-Nat          | > 1000       | > 1000       | > 1000      | > 1000       |  |
| Th-Nat         | > 1000       | ≻ 1000       | > 1000      | > 1000       |  |
| Sr-90          | NA           | ≻ 1000       | NA          | > 1000       |  |

#### Po-210 autodeposition



- Evaporate eluate to near dryness (T < 110°C)
- Convert residue into HCl form
  - Repeated evaporation with 5mL conc HCl
- Dissolve residue in 0.1M HCl
- Optional: addition of 100mg ascorbic acid
- Autodeposit Po onto Ag or Ni disc
  - T solution: 80 85°C
  - t between 90 min and 8 h
  - stirring



# Comparison of <sup>210</sup>Po auto-deposition yields on Ni and Ag Discs



|           | Recovery (%) |         | FWHM (keV) |         |  |
|-----------|--------------|---------|------------|---------|--|
| _         | mean         | Std (%) | mean       | Std (%) |  |
| Ni (N=10) | 61           | 30      | 18.4       | 8.2     |  |
| Ag (N=10) | 99           | 8.6     | 19.1       | 15.8    |  |

- Ag discs
  - Quantitative auto-deposition
  - Good reproducibility
- Ni discs
  - Reproducibility not stable
  - Inbetween change of supplier
- Both discs show very good resolution

## Performance data



#### Precision

Repeatability s<sub>r</sub> and Reproducibility s<sub>R</sub> for Pb-210 and Pb-210 < 10% (k = 1)</li>

|                                          | Pb-210 | Po-210 |
|------------------------------------------|--------|--------|
| Repeatability s <sub>r</sub><br>(N=6)    | 2.2    | 8.9    |
| Reproducibility s <sub>R</sub><br>(N=12) | 4.4    | 5.2    |

- Detection limits (DL) for V = 1.5 L
  - Pb-210 in the order of 20 mBq.L<sup>-1</sup> with counting time of 240 minutes
  - Po-210 in the order of 3 mBq.L<sup>-1</sup> with counting time of 1000 minutes





 Validation by succesful participation in intercomparison (BfS drinking water), comparison with accreditated method and analysis of spiked samples

|                   | Pb-210                |                       |                       |                           | Po-210 |                       |                       |                       |                       |       |
|-------------------|-----------------------|-----------------------|-----------------------|---------------------------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-------|
| Sample ref        | Ref. A                | Uc A                  | Exp. A                | Uc A                      | t      | Ref. A                | Uc A                  | Exp. A                | Uc A                  | t     |
| Sample rei.       | (Bq.L <sup>-1</sup> ) | (Bq.L <sup>-1</sup> ) | (Bq.l <sup>-1</sup> ) | (Bq.L <sup>-1</sup> )     | value  | (Bq.L <sup>-1</sup> ) | (Bq.L <sup>-1</sup> ) | (Bq.l <sup>-1</sup> ) | (Bq.L <sup>-1</sup> ) | value |
| Water 1+          | 9,61 <sup>E</sup> -02 | 2,87 <sup>E</sup> -02 | 7,00 <sup>E</sup> -02 | 3,00 <sup>⊑</sup> -02     | 0,6    | 1,30 <sup>E</sup> -02 | 2;91 <sup>E</sup> -03 | 1,33 <sup>E</sup> -02 | 8,54 <sup>E</sup> -03 | 0,1   |
| Water 2+          | < LD                  |                       | < LD                  |                           | N/A    | 2,03 <sup>E</sup> -03 | 1,15 <sup>E</sup> -03 | 1,60 <sup>E</sup> -03 | 6,00 <sup>E</sup> -04 | 0,3   |
| Spiked Water<br>1 | 1,77 <sup>E</sup> -01 | 1,93 <sup>E</sup> -02 | 1,60 <sup>E</sup> -01 | 3,30 <sup>⊑</sup> 60<br>3 | 0,9    | 1,60 <sup>E</sup> -01 | 1,93 <sup>E</sup> -02 | 1,39 <sup>E</sup> -01 | 1,84 <sup>E</sup> -02 | 1,0   |
| Spiked Water<br>2 | 1,69 <sup>E</sup> -01 | 5,15 <sup>E</sup> -03 | 1,63 <sup>E</sup> -01 | 8,09 <sup>E</sup> -03     | 0,7    | 1,69 <sup>E</sup> -01 | 5,15 <sup>E</sup> -03 | 1,55 <sup>E</sup> -01 | 1,94 <sup>E</sup> -02 | 0,7   |
| Spiked Water<br>3 | 1,66 <sup>E</sup> -01 | 5,08 <sup>E</sup> -03 | 1,58 <sup>E</sup> -01 | 8,09 <sup>E</sup> -03     | 0,9    | 1,66 <sup>E</sup> -01 | 5,08 <sup>E</sup> -03 | 1,50 <sup>E</sup> -01 | 2,04 <sup>E</sup> -02 | 0,7   |
| Spiked Water<br>4 | 1,69 <sup>E</sup> -01 | 5,18 <sup>E</sup> -03 | 1,63 <sup>E</sup> -01 | 8,09 <sup>E</sup> -03     | 0,6    | 1,69 <sup>E</sup> -01 | 5,18 <sup>E</sup> -03 | 1,57 <sup>E</sup> -01 | 1,80 <sup>E</sup> -02 | 0,7   |
| Mineralwater*     | 1,24 <sup>E</sup> -01 | 1,69 <sup>E</sup> -02 | 1,02 <sup>⊑</sup> -01 | 3,20 <sup>E</sup> -02     | 0,6    | 1,06 <sup>E</sup> -01 | 1,30 <sup>E</sup> -03 | 1,06 <sup>E</sup> -01 | 8,76 <sup>E</sup> -02 | 0,6   |
|                   |                       |                       |                       |                           |        |                       |                       |                       |                       |       |



•  $t \le 1$  • No significant difference: accurate

• t > 1 • Results are not accurate

(t corresponds to E<sub>n</sub> in ISO/IEC Guide 43-1)

# Pb-210 / Po-210 in environmental and biological samples



Dell, A.N., Curtis, M.C.: The Sequential Determination of <sup>210</sup>Pb and <sup>210</sup>Po in Environmental Samples using an EIChroM Resin, 6th International Conference Cogema-La Hague, 1996

Vajda, N et al.: A Novel technique for the Simultaneous Determination of <sup>210</sup>Pb and <sup>210</sup>Po Using a crown Ether, J. Environ. Radioact. 37(3), 355ff, 1997

Horwitz, E.P. et al.: A novel Strontium-selective extraction chromatographic resin, Solv. Ext. Ion Exch., 10(2), 1992

M. Villa: Isolation of lead and polonium from seawater and determination of Pb-210 by LSC, Oral presentation, LSC08, Davos 2008

## Pb and Po in milk, meat, crop and sediment samples (Dell et al.)



- Sample volume/mass: 100mL milk, 100g crop or meat, 10g sediment
- Addition of Po-208/9 and 10 mg stable Pb
   Preferably Po-209 (half-life, α-energy)
- Wet oxidation using HNO<sub>3</sub> and H<sub>2</sub>O<sub>2</sub> at T< 110°C
   <ul>
   low T to avoid Po losses
   Use of HF, « aqua regia » for soil and sediments
- Separation of Po and Pb on Sr Resin (3g)
- Po auto-deposition on Ag or Ni disc
- α-spec

#### Elution behaviour of Bi, Pb, Po on 3g SR Resin



Vajda et aL; 1997



Fig. 2. Elution chromatogram of lead, bismuth and polonium on Sr. Spec.

- 3g columns require rather large elution volumes not very suitable for citrate elution
- Typically Pb eluted with 6M HCl => requires post-tratment

#### Pb and Po in milk, meat, crop and sediment samples (Dell et al.)







- Sample preparation
- Add tracers/carrier at earliest convenience

   30 mg Pb in case of gravimetric yield determination
   1 10mg for spectrometry
- In case Po-210 to be determined mineralisation at <110°C</li>
  - If no Po higher temperatures may be employed
- 2 Options:
  - Complete dissolution
  - Leaching



- Complete dissolution (volumes per 5g sample):
  - 3 evaporations with 10 mL conc.  $\rm HNO_3$  and 40 mL conc. HF
  - 3 evaporations with 30 mL conc HNO<sub>3</sub>
  - Addition of 2g  $\rm H_{3}BO_{3}$  and 3 evaporations with 30 mL conc HCl
  - Dissolution in 30 50 mL 2M HCl
- Leaching (volumes per 5g sample):
  - 3 evaporations with 30 mL conc. HNO<sub>3</sub> and 5 mL 30%  $H_2O_2$
  - 3 evaporations with 30 mL conc HCl
  - Dissolution in 30 50 mL 2M HCl
- Dissolution: warming for 30 min, followed by filtration



- Separation chemistry:
- 3g Sr resin column preconditioned with 2M HCl
- Load from 2M HCl
- Rinse beaker with 2 x 5 mL 5M HCl
- Rinse column with 90 mL 2M HCl (Bi removal)
- Rinse column with 60 mL 6M HNO<sub>3</sub> (Po removal)
- Elute Pb with 60 mL 6M HCl



- Preparation of the sample for LSC measurement
  - Evaporation to dryness (yellow/brown residue will remain)
  - 3 evaporations with 2 mL conc HNO<sub>3</sub>
- Option a.) Gravimetric yield determination
  - Dissolve residue in 20 mL 1M HNO<sub>3</sub>
  - Add 400 mg ocalic acid
  - Adjust pH to 6 7
  - Filter, dry and weight
  - Redissolve in dilute acid (1 mL 6M HNO<sub>3</sub> or 10 mL 0.1M HNO<sub>3</sub>)
  - Add cocktail



- Option b.) Spectrometric yield determination
   Dissolve residue in 10 mL 0.1M HNO<sub>3</sub>
  - Withdraw aliquot for yield determination
    - In case of yield determination by ICP-MS and addition of small amounts of Pb carrier it is preferable to control Pb content of original sample to prevent over-estimation of the chemical yield
  - Add cocktail
- Measurement by LSC

### Pb-210 in soil samples (Benedik et al.)



- Preparation of the sample for GPC measurement
  - -Addition of 2 3 mL conc  $H_2SO_4$ ,
  - Heating for 30 min and filtration
  - Drying of filter and weighing
  - Gravimetric yield determination
  - Filter counting after Bi ingrowth

#### Po-210 via DGA Resin and MP



- Sherrod Maxwell et al.
- Rapid methods for water samples
- Co-precipitation with CaPhosphate
- Po separation via DGA Resin
- Sample preparation for alpha specrometry by microprecipitation with Bi-Phosphate





Fig. 8 Alpha spectra for Po isotopes using bismuth phosphate (100 µg Bi)



## Thank you for your attention!

#### shappel@triskem.fr





in

f

y

#### Elution experiment



#### Elution of a Band



Stolen from Bill Burnett!

#### Elution experiment





Stolen from Bill Burnett!

#### Free Column Volume (FCV)



• Volume of mobile phase in the resin bed:



- For extraction chromatography typically 0.65 mL per mL column bed
- Capacity factor k' expressed in FCV for comparison of methods using different column geometry normalisation









#### **Dry Weigh Distribution Ratio**



## k' = f ( [acid] )





**TRU Resin** 









From Horwitz (1)

<u>(HP193)</u>

53

#### **Resolution** R



54



Improvement of resolution R

> Decrease peak width  $\sigma$ : e.g. particle diameter, flow rate

Increase difference of k' values : modification of stationary or mobile phase, valence, auxiliary compexants



#### Results (Vrecek et al.)



#### Table 1 Survey of results for <sup>210</sup>Pb and <sup>210</sup>Po in IAEA-300 using procedure (a)–(d)

| Procedures used in the processing of a sample of IAEA-300 reference material $^{210}$ Pb $(Bq kg^{-1})^a$ $^{210}$ Po $(Bq kg^{-1})^a$ (Baltic Sea sediment)(Pb recovery in %)(Po recovery in %)Total sample dissolution (a) $352 \pm 42$ (91) $401 \pm 40$ (12)Dissolution after equilibration (b) $351 \pm 42$ (93) $313 \pm 31$ (19)Leaching with HF and HNO <sub>3</sub> (c) $348 \pm 41$ (88) $337 \pm 34$ (42)Leaching with H <sub>2</sub> O <sub>2</sub> and HNO <sub>3</sub> (d) $360$ $340.5$ Confidence interval(339-395)(273.6-361.0) |                                                                              |                                |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------|
| (Baltic Sea sediment)(Pb recovery in %)(Po recovery in %)Total sample dissolution (a) $352 \pm 42$ (91) $401 \pm 40$ (12)Dissolution after equilibration (b) $351 \pm 42$ (93) $313 \pm 31$ (19)Leaching with HF and HNO3 (c) $348 \pm 41$ (88) $337 \pm 34$ (42)Leaching with H2O2 and HNO3 (d) $343 \pm 26$ (84) $347 \pm 31$ (54)Recommended value $360$ $340.5$ Confidence interval $(339-395)$ $(273.6-361.0)$                                                                                                                              | Procedures used in the processing of a sample of IAEA-300 reference material | $^{210}$ Pb $(Bq kg^{-1})^{a}$ | $^{210}$ Po (Bq kg <sup>-1</sup> ) <sup>a</sup> |
| Total sample dissolution (a) $352 \pm 42$ (91) $401 \pm 40$ (12)Dissolution after equilibration (b) $351 \pm 42$ (93) $313 \pm 31$ (19)Leaching with HF and HNO3 (c) $348 \pm 41$ (88) $337 \pm 34$ (42)Leaching with H2O2 and HNO3 (d) $343 \pm 26$ (84) $347 \pm 31$ (54)Recommended value $360$ $340.5$ Confidence interval $(339-395)$ $(273.6-361.0)$                                                                                                                                                                                       | (Baltic Sea sediment)                                                        | (Pb recovery in %)             | (Po recovery in %)                              |
| Dissolution after equilibration (b) $351 \pm 42$ (93) $313 \pm 31$ (19)Leaching with HF and HNO3 (c) $348 \pm 41$ (88) $337 \pm 34$ (42)Leaching with H2O2 and HNO3 (d) $343 \pm 26$ (84) $347 \pm 31$ (54)Recommended value $360$ $340.5$ Confidence interval $(339-395)$ $(273.6-361.0)$                                                                                                                                                                                                                                                       | Total sample dissolution (a)                                                 | 352±42 (91)                    | $401 \pm 40$ (12)                               |
| Leaching with HF and HNO3 (c) $348 \pm 41$ (88) $337 \pm 34$ (42)Leaching with H2O2 and HNO3 (d) $343 \pm 26$ (84) $347 \pm 31$ (54)Recommended value $360$ $340.5$ Confidence interval $(339-395)$ $(273.6-361.0)$                                                                                                                                                                                                                                                                                                                              | Dissolution after equilibration (b)                                          | 351±42 (93)                    | 313 ± 31 (19)                                   |
| Leaching with $H_2O_2$ and $HNO_3$ (d) $343 \pm 26$ (84) $347 \pm 31$ (54)Recommended value $360$ $340.5$ Confidence interval $(339-395)$ $(273.6-361.0)$                                                                                                                                                                                                                                                                                                                                                                                        | Leaching with HF and HNO <sub>3</sub> (c)                                    | $348 \pm 41$ (88)              | 337 ± 34 (42)                                   |
| Recommended value         360         340.5           Confidence interval         (339–395)         (273.6–361.0)                                                                                                                                                                                                                                                                                                                                                                                                                                | Leaching with $H_2O_2$ and $HNO_3$ (d)                                       | 343±26 (84)                    | 347 ± 31 (54)                                   |
| Confidence interval (339–395) (273.6–361.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended value                                                            | 360                            | 340.5                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Confidence interval                                                          | (339–395)                      | (273.6–361.0)                                   |

<sup>a</sup>Error margins derived from three replicate measurements.

Comparison of <sup>210</sup>Pb and <sup>210</sup>Po results by radiochemical procedure (d) and gamma spectrometry

| Sample           | <sup>210</sup> Pb (Bqkg <sup>-1</sup> ) <sup>a</sup><br>(radiochemical: procedure d) | $^{210}$ Pb (Bqkg <sup>-1</sup> ) <sup>b</sup><br>(non-destructive: direct $\gamma$ -detection) | <sup>210</sup> Po (Bqkg <sup>-1</sup> ) <sup>a</sup><br>(radiochemical: procedure d) |
|------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| River sediment 1 | 63±8                                                                                 | $60 \pm 13$                                                                                     | 65±7                                                                                 |
| River sediment 2 | $69 \pm 8$                                                                           | $66 \pm 11$                                                                                     | $68 \pm 7$                                                                           |
| River sediment 3 | $141 \pm 7$                                                                          | $144 \pm 6$                                                                                     | $145 \pm 6$                                                                          |
| Soil near TPT 1  | $126 \pm 13$                                                                         | $121 \pm 12$                                                                                    | $124 \pm 12$                                                                         |
| Soil near TPT 2  | $110 \pm 13$                                                                         | $100 \pm 10$                                                                                    | $111 \pm 9$                                                                          |
| Soil near TPT 3  | $75 \pm 9$                                                                           | $80 \pm 8$                                                                                      | $107 \pm 9$                                                                          |
| Needles near TPT | $68 \pm 11$                                                                          |                                                                                                 | $69 \pm 17$                                                                          |
| Grass near TPT   | $36 \pm 4$                                                                           |                                                                                                 | $32 \pm 6$                                                                           |
| IAEA 368         | $26 \pm 4$                                                                           | $21 \pm 2$                                                                                      | $20 \pm 2$                                                                           |
| (sediment)       | 23 (15%) <sup>c</sup>                                                                | 23 (15%)°                                                                                       |                                                                                      |
| IAEA 307         | $56 \pm 7$                                                                           | $63 \pm 3$                                                                                      | $60 \pm 10$                                                                          |
| (sea plant)      | 59 (40–91) <sup>c</sup>                                                              | <i>59 (40–91)</i> °                                                                             |                                                                                      |
| IAEA 327         | $63 \pm 7$                                                                           | $57 \pm 2$                                                                                      | $57 \pm 9$                                                                           |
| (soil)           | 59 (8%) <sup>c</sup>                                                                 | 59 (8%) <sup>c</sup>                                                                            | _                                                                                    |

Note: <sup>210</sup>Pb and <sup>210</sup>Po are considered as being in equilibrium.

<sup>a</sup>Error margins derived from three replicate measurements.

<sup>b</sup> Error margin derived from the statistical variation of a single sample analysed.

<sup>c</sup>Certified values in italics.

Table 2