

Tritium extraction from organicrich sample matrices using the HBO₂

Ian Croudace, <u>Rich Marsh</u>, Phil Warwick, Dave Reading

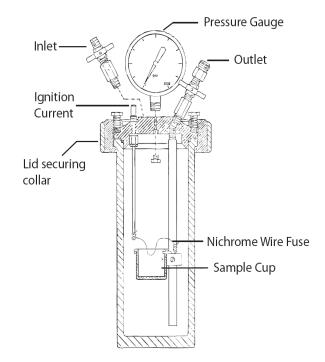
Raddec International Ltd

Outline

- ³H extraction by bomb combustion
- Introduction to the HBO₂
- Combustion Procedure
- Safety Assessment
- HBO₂ (Mk II) developments
- User case study

Analytical requirements?

Instances where extraction of ³H from organicrich samples is beneficial:

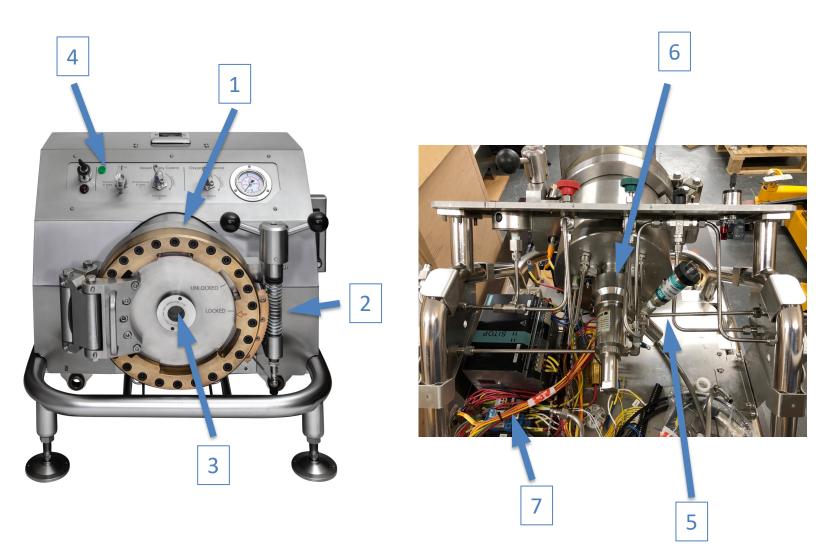

- Environmental monitoring
 Goften organic rich + low LOD requirements
- Nuclear decommissioning
 Grphan wastes e.g. oils, rubbers, plastics
- Fusion reactor operational support
 - G Heterogeneous soft wastes

Bomb Combustion

- Enable ³H extraction via complete oxidation in an excess oxygen environment.
- Few commercial systems available for ³H extraction, typically a Parr 1121 used

e.g. Moghissi et al., (1974)

- Limited sample size (< 10 g)
- Manual operation
- Incomplete oxidation (quenching)



The Raddec Hyperbaric Oxidiser (HBO₂)

- Designed specifically for ³H extraction
- High capacity combustion vessel
- Operates at pressures ≤ 100 bar
- Optimised for organic-rich matrices
- Large samples can be combusted (typically up to 30 g)

System components (I)

Combustion Procedure

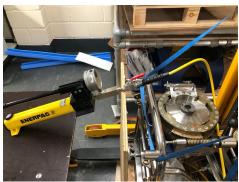
Sample pelletised or cut to size

Sample loaded into disposable silica crucible

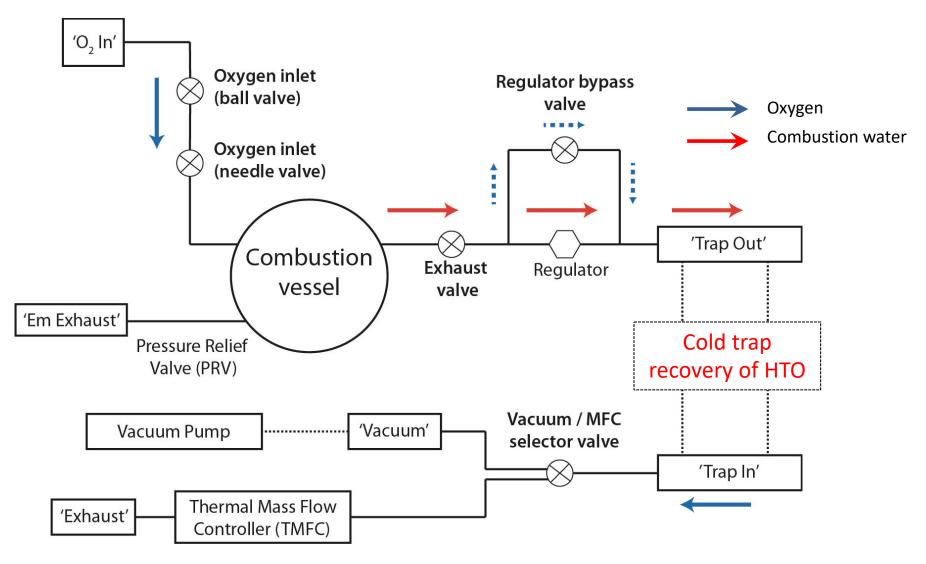
by LSC

Measurement

Combustion water recovered under vacuum

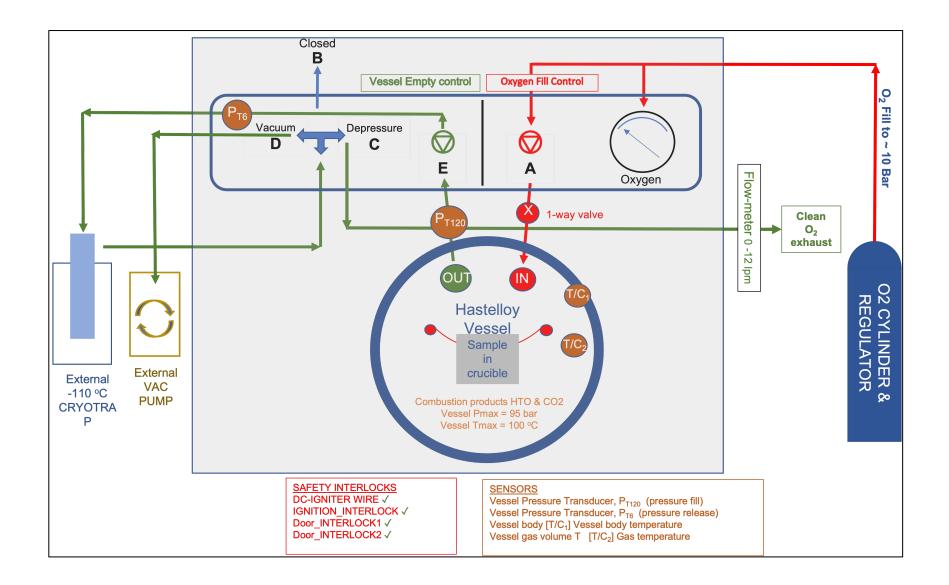


Sample combusted

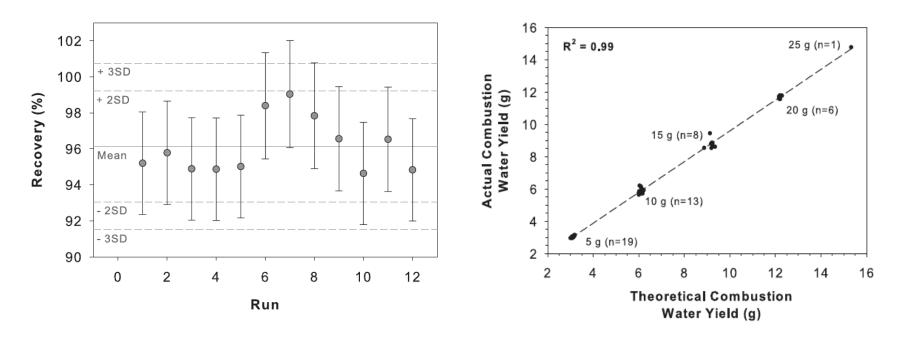

Safety Systems & Verification

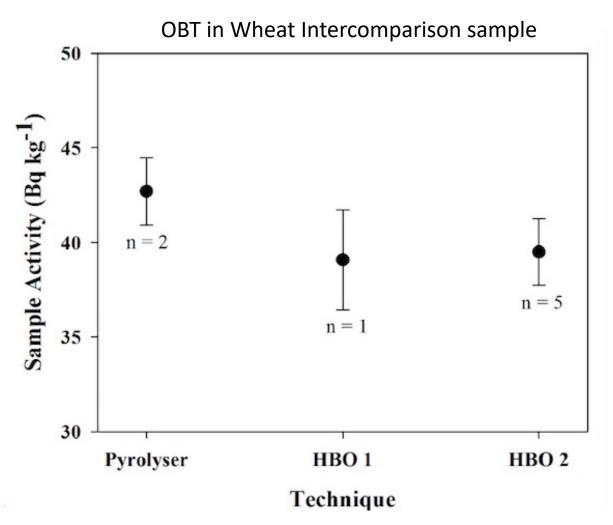
- Independently verified hydraulic pressure test (136 bar)
- Finite Element Analysis pressure compatibility
- Meets Directive 2014/68/EU (III B Prod + C2)
- High-volume Swagelok PRV
- Dual vessel closure interlocks
- Dual ignition interlocks

Flow schematic (HBO₂ Mk I)


HBO₂ Mk II Developments

- Simplified gas handling system and flow control
- Optional Hastelloy C/276 vessel
- Upgraded software interface & tablet PC
- Integrated exhaust outlet tube heating
- Re-design of service connections (ergonomic)





Validation (I)

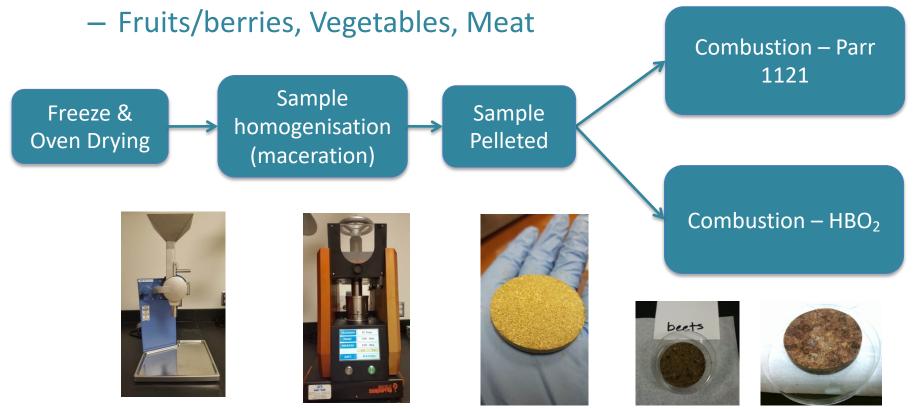
Gravimetric recovery testing based on cellulose pellet combustions - 20 g replicate pellets (left); incremental masses (right). Completed on HBO₂ (Mk I).

Validation (II)

Case Study

Environmental ³H Measurement Canadian Nuclear Safety Commission (CNSC), Ottawa

All data & images courtesy of Nadereh St-Amant, CNSC, Ottawa. See also Marsh et al. (2017)


Background

- Discharges from Canada's nuclear industry regulated by CNSC
- Principal releases from D₂O moderated
 CANDU reactors e.g. Bruce, Darlington etc.
- Also ³H processing, removal and research facilities e.g. Chalk River, SRB Technologies etc.

Independent discharge and environmental monitoring – compliance and reassurance

³H analysis

HTO in water, HT/HTO in air and <u>OBT</u> in foodstuffs

System comparison (I)

Parr 1211

- Max sample size 10 g
- Combustion process not visible and maybe quenched
- Manual combustion water recovery
- Cloudy / coloured combustion water
- Requires purification prior to counting by LSC

- Max sample size 30+ g
- Combustion progress is visible
- Integrated vacuum collection of combustion water
- Direct measurement of combustion water is possible

System comparison (II)

Parr 1211

tSIE % difference typically 12-24%

tSIE % difference typically 0-1%

tSIE % difference values measured for wheat samples, relative to distilled water quench values.

OBT Environmental data

1.5 to 60 Bq/kg fresh weight

All results are Bq/kg fresh weight

System	HBO ₂						Parr 1121	
Foodstuff	Fruits and Berries	Vegetables	Potatoes	Beef	Chicken	Pork	Milk	Fish
Typical LOD (10 g sample)	2 Bq/kg (0.5 - 1 for 20-30 g sample)						3 Bq/kg	
Tritium Processing Facility	11.8 - 17.5	1.5	1.5	N/A	N/A	N/A	1.5	N/A
NPP1	1.5 - 2	1.5 - 2	2	2 - 56.5	1.5	2 - 21	2	1.8 - 2
NPP2	1.5	1.5	1.6 - 2.1	N/A	1.5 - 10.5	N/A	1.5	N/A
NPP3	1.5 - 2.8	1.5 - 1.6	N/A	N/A	N/A	N/A	1.5	1.5 - 15.9

All data courtesy of Nadereh St-Amant, CNSC, (Marsh et al. 2017.

HBO₂ – Pyrolyser validation

Sample	HBO ₂	Pyrolyser	HBO ₂ memory (%)
Cardboard	11300 ± 3000	11000 ± 2000	0.6
Cardboard	6000 ± 1000	8000 ± 2000	0.5
"Housekeeping"	600 ± 100	3100 ± 600	0.3
"Housekeeping"	80 ± 20	2700 ± 500	1.3
PVC	3000 ± 600	2600 ± 500	N/A

All data courtesy of Natasha Gotts, CCFE (Marsh et al. 2017.

- Good agreement for Cardboard and PVC samples
- Minimal observed memory
- Discrepancy between "Housekeeping" data are associated with the highly heterogeneous nature of the samples

Conclusions

- The HBO₂ enables rapid and efficient recovery of ³H from organic rich samples up to 30 g
- The system is applicable to a wide range of sample types including biota and soft-waste
- Also applicable to orphan wastes such as oils and sludge's
- Can offer improved LODs compared to thermal oxidisers.

Acknowledgments

 Thank you to CNSC Ottawa and CCFE for sharing their data and experiences with the HBO₂ and allowing us to present some of these in this talk.