

1. Scope

This method aims to quantify ⁹⁹Tc in seawater and urine samples using TK-TcScint Resin for simultaneous separation and quantification by liquid scintillation counting (LSC). This approach allows for higher sample throughput (samples can be processed in parallel) and provides a more time-efficient solution, as the samples can be measured overnight.

2. Summary

The reported method is based on the publication by (Barrera et al., 2016). Technetium-99 is produced during the lifecycle of nuclear power plants and is therefore present in waste samples that require characterization. The anion TcO_4^- is highly mobile, making the presence of ⁹⁹Tc in waste samples a potential environmental concern. Given its trace concentration, extensive methods have traditionally been employed to separate it from major elements in samples before quantification.

The development of a plastic scintillator resin (TK-TcScint Resin) enables the simultaneous preconcentration, separation, and quantification of ⁹⁹Tc using liquid scintillation counting (LSC). This method was applied to real spiked samples, such as seawater and urine, yielding low deviations in results, demonstrating its reliability and efficiency.

3. Significance of use

This method proposes a fast, reliable, and efficient approach for quantifying ⁹⁹Tc in various samples, enabling effective monitoring of ⁹⁹Tc activity originating as waste from nuclear power plants.

4. Interferences

Given the nature of the resin, some evaluated interferences included chloride, nitrite and sulphate as chemical interferences and 36 Cl and 238 U/ 234 U as radioactive interferences potentially present in real samples. The removal of 36 Cl during sample loading onto the resin was achieved using 0.5 M HCl, while uranium isotopes were effectively eluted from the column with a mixture of 0.1 M HNO₃ and 0.1 M HF.

5. Apparatus

- a. Hot plate and stirrer
- b. Analytical balance -0.0001 g sensitivity

- c. Muffle oven
- d. Sand bath
- e. Quantulus LS spectrometer (PerkinElmer) with logarithmic amplification, a multichannel analyser (MCA) (4096 channels distributed in four segments of 1024), alpha/beta discrimination and background reduction by active guard
- f. Vacuum box
- g. Peristaltic pump

6. Reagents

a. Reagents

Unless otherwise indicated, all references to water should be understood to mean double deionized distilled water. All reagents should be at least of analytical grade.

- Tk-TcScint Resin 6 mL column vial (TK-TcScint resin produced in Triskem, France)
- Concentrated HCl solution (37%)
- HNO₃ 69% from PanReac (Castellar del Valles, Spain)
- Concentrated HF solution (49%)
- Stock solution ⁹⁹Tc
- Stock solution ³⁶Cl
- Stock solution ²³⁸U/²³⁴U
- OptiPhase SuperMix cocktail (PerkinElmer, Whatman, MA, USA)
- b. Preparation of solutions
- <u>0.1 M HCl:</u> For 100 mL solution add around 50 mL deionized water at the bottom of the 100 mL flask and add slowly 0.83 mL concentrated HCl (37% HCl). Then, add water to the volumetric flask until the total volume. Mix thoroughly.
- <u>0.1 M HF and 0.1 M HNO₃</u>: For 100 mL solution add around 50 mL deionized water at the bottom of the 100 mL flask and add slowly 0.64 mL concentrated HNO₃ (69% HNO₃) and 0.36 mL concentrated HF (49% HCl). Then, add water to the volumetric flask until the total volume. Mix thoroughly.
- <u>0.5 M HCl:</u> For 100 mL solution add around 50 mL deionized water at the bottom of the 100 mL flask and add slowly 4.17 mL concentrated HCl (37% HCl). Then, add water to the volumetric flask until the total volume. Mix thoroughly.

c. Samples used

- Seawater sample (spiked with ⁹⁹Tc and ³⁶Cl as interference with final activity of 4.2 Bq)
- o Urine samples

7. Procedure

a. Sample preparation

Preparation of active samples prior to TK-TcScint separation

Seawater samples

- 1. Prepare samples to a final concentration of 0.1 M HCl (in double deionised water)
- 2. Spike stock solutions of ⁹⁹Tc and ³⁶Cl to a final activity of 4.20 Bq of each radionuclide (³⁶Cl considered as an interference)
- 3. In case uranium interferences might be expected, the activity of ²³⁸U/²³⁴U to be spiked is 0.67 Bq
- 4. Blank samples in 0.1 M HCl (same composition but no active solution spiked)

<u>Urine samples</u>

- 1. Take 100 mL of urine sample
- 2. Mix with 10 mL of 65% HNO_3
- 3. Evaporate to dryness
- 4. Dissolve the residue in 5 mL of 65% HNO_3
- 5. Evaporate again to dryness
- 6. Heat to 550°C in a muffle oven for 30 min
- 7. Dissolve the residue in 3 mL of 65% HNO₃
- 8. Add 100 mL of double deionised water and 5 mL of H_2O_2
- 9. Heat to 90°C for 1 h in a sand bath (ensure oxidation of Tc)
- b. Radiochemical separation

Preparation of Tc-PSresin column vials (TK-TcScint Resin)

Fill a modified 6 mL column vial (with caps on both the bottom and top) with 3 g of TK-TcScint resin and 1.26 mL of double-deionized water. Immerse the column vial in an ultrasonic bath for 15 minutes to ensure homogenization. The flow rate was set to 0.5 mL/min for the complete separation procedure.

- 1. Connect the pump to the column vial for removing the remaining water on the vial
- 2. Conditioning: 5 mL 0.1 M HCl

3. Loading: from the ~110 mL, take 10 mL and pass them through the TK-TcScint Resin

Seawater samples

- 4. Rinsing: 4 times 5 mL double deionized water
- 5. After last rinse step, pump for 60 min to ensure complete absence of solution on the vial/resin

Urine samples

- 4. 1^{st} rinsing: 3 times 5 mL of a mixture of 0.1 M HF and 0.1 M HNO₃
- 5. 2nd rinsing: 1 time 5 mL double deionized water

³⁶Cl interference

- 4. 1st rinsing: 4 times 5 mL double deionized water
- 5. 2nd rinsing: 1 time 5 mL 0.5 M HCl
- c. Sample measurement
- 1. Disconnect TK-TcScint Resin column vial from the pump
- 2. Close the column vial with the two caps for measurement
- 3. Place the column vial on a 20 mL polyethylene scintillation vial and place the vial into the detector
- 4. Effluents (collected after loading and rinsing) were collected all together, and an aliquot of 6 mL is mixed with 14 mL of OptiPhase SuperMix cocktail for measurement. After that, the vial is placed on the detector
- 5. Prepare a protocol in the low coincidence bias and high-energy multichannel analyser configuration (detector: Quantulus detector)
- 6. Before the actual counting, vials are left on the dark for 2 h
- 7. Measurement of the samples is performed using 9 periods of 20 min with 3 seconds in each period for SQP(E) parameter
- 8. Rhenium is used as a tracer for chemical recovery evaluation; thus, Re is measured in the effluent fraction to ensure 100% retention on the PS Resin
 - Total efficiency includes both the detection efficiency of ⁹⁹Tc and the chemical recovery for this radionuclide
 - Detection efficiency values are approximately 70% (70.0% ± 1.9%)

8. References

 Barrera, J., Tarancón, A., Bagán, H., & García, J. F. (2016). A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. *Analytica Chimica Acta*, 936, 259–266. https://doi.org/10.1016/j.aca.2016.07.008